We propose prototypical networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each new class. Prototypical networks learn a metric space in which classification can be performed by computing distances to prototype representations of each class. Compared to recent approaches for few-shot learning, they reflect a simpler inductive bias that is beneficial in this limited-data regime, and achieve excellent results. We provide an analysis showing that some simple design decisions can yield substantial improvements over recent approaches involving complicated architectural choices and meta-learning. We further extend prototypical networks to zero-shot learning and achieve state-of-theart results on the CU-Birds dataset.
translated by 谷歌翻译
Rigorous guarantees about the performance of predictive algorithms are necessary in order to ensure their responsible use. Previous work has largely focused on bounding the expected loss of a predictor, but this is not sufficient in many risk-sensitive applications where the distribution of errors is important. In this work, we propose a flexible framework to produce a family of bounds on quantiles of the loss distribution incurred by a predictor. Our method takes advantage of the order statistics of the observed loss values rather than relying on the sample mean alone. We show that a quantile is an informative way of quantifying predictive performance, and that our framework applies to a variety of quantile-based metrics, each targeting important subsets of the data distribution. We analyze the theoretical properties of our proposed method and demonstrate its ability to rigorously control loss quantiles on several real-world datasets.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
We show two average-reward off-policy control algorithms, Differential Q-learning (Wan, Naik, & Sutton 2021a) and RVI Q-learning (Abounadi Bertsekas & Borkar 2001), converge in weakly communicating MDPs. Weakly communicating MDPs are the most general MDPs that can be solved by a learning algorithm with a single stream of experience. The original convergence proofs of the two algorithms require that the solution set of the average-reward optimality equation only has one degree of freedom, which is not necessarily true for weakly communicating MDPs. To the best of our knowledge, our results are the first showing average-reward off-policy control algorithms converge in weakly communicating MDPs. As a direct extension, we show that average-reward options algorithms for temporal abstraction introduced by Wan, Naik, & Sutton (2021b) converge if the Semi-MDP induced by options is weakly communicating.
translated by 谷歌翻译
前列腺活检和图像引导的治疗程序通常是在与磁共振图像(MRI)的超声指导下进行的。准确的图像融合依赖于超声图像上前列腺的准确分割。然而,超声图像中降低的信噪比和工件(例如,斑点和阴影)限制了自动前列腺分割技术的性能,并将这些方法推广到新的图像域是本质上很难的。在这项研究中,我们通过引入一种新型的2.5D深神经网络来解决这些挑战,用于超声图像上的前列腺分割。我们的方法通过组合有监督的域适应技术和知识蒸馏损失,解决了转移学习和填充方法的局限性(即,在更新模型权重时,在更新模型权重时的性能下降)。知识蒸馏损失允许保留先前学习的知识,并在新数据集上的模型填充后降低性能下降。此外,我们的方法依赖于注意模块,该模块认为模型特征定位信息以提高分割精度。我们对一个机构的764名受试者进行了培训,并仅使用后续机构中的十个受试者对我们的模型进行了审核。我们分析了方法在三个大型数据集上的性能,其中包括来自三个不同机构的2067名受试者。我们的方法达到了平均骰子相似性系数(骰子)为$ 94.0 \ pm0.03 $,而Hausdorff距离(HD95)为2.28 $ mm $,在第一机构的独立受试者中。此外,我们的模型在其他两个机构的研究中都很好地概括了(骰子:$ 91.0 \ pm0.03 $; hd95:3.7 $ mm $ and Dice:$ 82.0 \ pm0.03 $; hd95 $; hd95:7.1 $ mm $)。
translated by 谷歌翻译
我们展示了具有高斯流程先验的非线性回归模型中产生的高维单模式后分布的示例后措施浓缩。基于梯度或随机步行步骤,对一般MCMC方案的反示例持有,该理论用于大都市 - 危机调整后的方法,例如PCN和MALA。
translated by 谷歌翻译
视频稳定在提高视频质量方面起着核心作用。但是,尽管这些方法取得了很大的进展,但它们主要是在标准天气和照明条件下进行的,并且在不利条件下的性能可能会差。在本文中,我们提出了一种用于视频稳定的综合感知不良天气鲁棒算法,该算法不需要真实数据,并且只能在合成数据上接受培训。我们还提出了Silver,这是一种新颖的渲染引擎,可通过自动地面提取程序生成所需的训练数据。我们的方法使用我们的特殊生成的合成数据来训练仿射转换矩阵估计器,避免了当前方法面临的特征提取问题。此外,由于在不利条件下没有视频稳定数据集,因此我们提出了新颖的VSAC105REAL数据集以进行评估。我们将我们的方法与使用两个基准测试的五种最先进的视频稳定算法进行了比较。我们的结果表明,当前的方法在至少一个天气条件下的表现差,即使在一个具有合成数据的小数据集中培训,我们就稳定性得分,失真得分,成功率和平均种植方面取得了最佳性能考虑所有天气条件时的比率。因此,我们的视频稳定模型在现实世界的视频上很好地概括了,并且不需要大规模的合成训练数据来收敛。
translated by 谷歌翻译
由于生成对抗网络(GAN)的突破,3D可控制的肖像合成已大大提高。但是,用精确的3D控制操纵现有的面部图像仍然具有挑战性。虽然连接gan倒置和3D感知,但噪声到图像是一种直接的解决方案,但它效率低下,可能导致编辑质量明显下降。为了填补这一空白,我们提出了3D-FM GAN,这是一个专门为3D可控制的面部操作设计的新型有条件GAN框架,并且在端到端学习阶段后不需要任何调整。通过小心地编码输入面图像和3D编辑的基于物理的渲染,我们的图像生成器提供了高质量,具有身份的3D控制面部操纵。为了有效地学习这种新颖的框架,我们制定了两种基本的训练策略和一种新颖的乘法共同调制体系结构,可在天真的方案上显着改善。通过广泛的评估,我们表明我们的方法在各种任务上的表现优于先前的艺术,具有更好的编辑性,更强的身份保存和更高的照片真实性。此外,我们在大型姿势编辑和室外图像上展示了设计更好的概括性。
translated by 谷歌翻译
在此,我们描述了我们称为艾伯塔省计划的人工智能研究方法。艾伯塔省的计划是在我们在艾伯塔省的研究小组中以及全世界志趣相投的其他人中追求的。我们欢迎所有将加入我们的人参加这一追求的人。
translated by 谷歌翻译
价值迭代(VI)是一种基础动态编程方法,对于最佳控制和强化学习的学习和计划很重要。 VI分批进行,其中必须完成对每个状态值的更新,然后才能开始下一批更新。如果状态空间较大,完成单批次的昂贵,那么对于许多应用来说,VI不切实际。异步VI通过一次,就地和任意顺序一次更新一个状态来帮助解决大型状态空间问题。但是,异步VI仍然需要在整个动作空间上最大化,这使得对具有较大动作空间的域不切实际。为了解决这个问题,我们提出了双重同步价值迭代(DAVI),这是一种新算法,将异步从各州到州和行动的概念推广。更具体地说,DAVI在可以使用用户定义的大小的采样子集上最大化。使用采样来减少计算的这种简单方法使VI具有类似吸引人的理论属性,而无需等待每个更新中的整个动作空间进行全面扫描。在本文中,我们显示了DAVI收敛到最佳值函数,概率是,以接近几何的速率与概率1-delta收敛,并在计算时间中返回近乎最佳的策略,该策略几乎与先前建立的对VI结合的限制。我们还从经验上证明了Davi在几个实验中的有效性。
translated by 谷歌翻译